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Abstract 

A simplified method of analysis is 

presented for the determination of dynamic 

properties of single-story structures founded 

on flexible foundations. The general equations 

for natural frequency, mode shapes and modal 

damping are applied to structures founded on 

an elastic half-space and on piles. The 

results of parameter studies, including the 

effects of hysteretic soil material damping, 

are presented for these two cases. 

Introduction 

Although simplified solutions to a problem can suffer from some 

obvious limitations in their ability to account for irregular 

geometries, variations in material properties, and details in 

mathematical modelling, they are useful for the following reasons: 

a) they can be used as first-order approximations to the more 

refined complex problem; 
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b) they often permit the user to appreciate the essential 

features of the problem more readily than the solution to the 

complex problem would permit; 

c) they permit the isolation of the important parameters that 

govern the behavior of the system more readily than would be 

possible by numerical solutions such as the finite element 

method. 

This paper deals with a simplified method of analysis for 

determining the natural frequencies, mode shapes, and modal damping 

ratios of structure-ground interaction systems under dynamic loads. 

Once these quantities are known, the structural response and forces 

induced by seismic loads or other dynamic disturbances can be 

determined conveniently by response spectrum techniques. 

Method of Analysis 

The major simplifications employed were as follows: 

1. The mathematical model of a given structure is simplified to a 

single-story structure founded on an elastic base. This model 

is represented in Figure 1; it contains the essential features 

present in structure-ground interaction, namely interstory 

damping, frequency-dependent foundation properties, foundation 

damping, and foundation mass. This model has been used in a 

number of previous investigations (8,9,4,5). Cross-coupling 

between translational and rotational base motion is neglected. 



Multistory structures can be reduced to this simple model by 

methods outlined in Ref. 5. 

2. The modal damping ratio is determined from energy principles 

in which the properties of the uncoupled mode shapes are 

employed. This can be expected to give reasonable results 

when the modal damping ratio is relatively small, say less 

than 10% of critical. 

3. The seismic response is determined from a modal solution 

employing response spectra of ground motions. A similar 

approach can be used to evaluate the effects of wind loading. 

This requires as basic quantities the natural frequencies, 

mode shapes and modal damping ratios of the dynamic system. 

The present approach is thought to be simpler and more general 

than previously available solutions, which dealt specifically with 

the foundations on an elastic half-space. These include works by 

Rainer (9), Jennings and Bielak (5), Veletsos and Nair (4), and 

Bielak (7), although the last of these also considers shallow 

buried foundations. Results for pile foundations have been 

presented using discretized mathematical models (15,16). 

Although it is possible to determine the modal frequencies 

and mode shapes of a dynamic system from an eigenvalue calculation, 

the method employed here is that of iteration. Iteration can be 

considered as an approximate method, but since the problem 

converges rapidly the answers can be obtained to any desired degree 

of accuracy. The use of the iteration approach enables one to 



derive simple relationships for the fundamental frequency, mode 

shapes, and the modal damping ratio of the system, as will be 

demonstrated later. 

Natural Frequencies  

The mathematical model of the structure under investigation 

consists of a base mass m
o 

resting on an elastic half-space and a top 

mass ml' as shown in Fig. 1. The equations of motion and 

derivation of the transfer functions involving real and imaginary 

terms can be found in Refs. (14) (8), and (9) and (5). 

If only the real parts of the transfer function are retained 

and base excitation is zero (i.e. undamped free vibration is 

assumed) the following equation is obtained for the relative base 

displacement uH, interstory displacement u
s 

and rocking 

displacement IA) 
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and 

a = moimr = Io/I' KH and K0 
 are horizontal and 

rotational stiffnesses of the foundation on the ground, 

and p is the frequency of the interactive system. 

Io is the mass moment of inertia of m1 and mo about 

their own axes of rotation, and I = m1
h2 is the 

geometric mass moment of inertia of the structure. Other 

terms are defined in Fig. 1. The frequency equation 

obtained from Eq. (1) is then: 

p2	 Q2 w2 0 
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Since p2  is also contained in 22  and 220' successive 

approximations are required for the evaluation of p2. If the 

products of p2  with a and a are neglected, Eq. (6) reduces 

to the well-known Southwell-Dunkerly approximation (6): 

(7)  
,2 w2 w2 w2 0 

Equation (7) gives the first approximation for p2  of the 

fundamental mode. Successively improved values of p2, up to any 

desired degree of accuracy, are obtained with further cycles of 

iteration, using Eqs. (5) or (6). These equations are equally 

valid for the second and third mode of the mathematical model in 

Fig. 1. However, the computations are quite sensitive. If these 

frequencies are required it is probably better to use conventional 

eigenvalue procedures. 

Determination of Mode Shapes  

Once the eigenvalues have been determined, the corresponding 

mode shapes can be found by substituting in Eq. (1) and solving 

for the displacement components. If the expression for p2  in 



Eq. (6) is substituted into Eq. (1), the following relationships 

for the modal amplitude ratios d, E and y are obtained: 
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The modal amplitude ratios will be accurate if the resonant 

frequency p2  is accurate since the relationships (8) to (10) 

do not involve any additional approximations. 



Modal Damping Ratio  

A modal damping ratio XE  can be obtained from energy 

considerations as presented by Novak (2): 

(11) XE 

c u2  + CHuH2  + co2  
S S 

2p (mouth  + mi(us 
 + uH  + 11(02  + 10

(1)2) 

where C
s = 2X0 

/TT 2Xowoml is the interstory damping 
1 

coefficient in units of force per velocity squared, and CH  and C 

are the damping coefficients in the horizontal and rotational 

direction, respectively, of the foundation. By evaluating the 

various damping terms C and substituting the modal amplitudes 

u
s' 

uH and 11(1), the modal damping ratio XE  for any mode can be 

evaluated. Some numerical comparisons between an equivalent modal 

damping ratio Xeq and XE have been presented in Ref. (3). 

By expressing the displacement amplitudes in the form of 

modal amplitude ratios of Eqs. (8), (9), and (10), Eq. (11) becomes: 

3 
2 4. A  p A ..,21 (12) X

E
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where AH  = CH/2pm1  and A4, = C(112pm1h2. 



19-10 

The damping coefficients CH  and Cci, can include the contributions 

from various sources of energy dissipation such as radiation damping, 

material damping, partial burial, and pile foundations. 

Foundations on Elastic Half-space 

Although the above relationships for natural frequency and 

damping ratios are valid for any geometric configuration of the 

base, as well as for shallow buried foundations or pile 

foundations, specific solutions will now be obtained for 

structures with circular foundations resting on an elastic 

half-space. This resembles a common configuration, for example, 

of nuclear power reactors. 

Natural Frequency  

As can be seen from Eq. (5), the natural frequency of the 

interaction system depends on the frequencies w2, 2121 
 and q, 

as defined by Eqs. (2) to (4), except that the subscripts h and 

apply to the half-space solution and replace the more general 

subscripts H and 0, respectively. This subscript h should 

not be confused with h, the height of the structure. 

With appropriate substitution for the properties of circular 

foundations and simplification, Eq. (7) becomes: 



w2 k 1 h2/r2  
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p2 Gr e(1 - p2/w121) 
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Gre Grad 
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G = shear modulus of the ground, and kh  and k0  are the 

frequency-dependent horizontal and rotational stiffness 

coefficients for the circular footing on the half-space, 

and v is Poisson's ratio. An approximation analogous to 

Eq. (7) is obtained if the terms ap2q and aP2/wt are 

neglected. 

The primary parameters that affect the frequency reduction 

k
the ratio of the stiffness of the structure 

Gr 

to that of the foundation resting on the 

ground, and 

2  h b) the square of the aspect ratio of the 
r 

structure. 

are: 

a) 



Secondary influences on the natural frequency reduction are: 

Poisson's ratio of the elastic half-space, and the translational 

and rocking frequencies w2  and w2  as defined above. 

The former is the frequency of the base mass on the elastic 

half-space in the horizontal direction, the latter is the rocking 

frequency considering only the rotational inertia of base and top 

masses about their own axes of rotation. 

It should be noted that the shear wave velocity of the ground, 

Vs = (G/p)2  , is a significant parameter in the sense that it 

is a function of the shear modulus G, and thus a convenient 

parameter designating soil stiffness (p is the mass density of 

the ground). V
s 

also plays a minor role in the determination of 

the foundation stiffness coefficients kh 
and k since these 

are generally functions of a = pr/V
s
. However, since V

s 
 is not 

a primary parameter in the frequency reduction of the structure-

ground interaction systems, it should not be used by itself to 

establish criteria for assessing the importance of ground-structure 

interaction effects. 



Modal Damping Ratio for Elastic Half-space  

The modal damping ratio is given by Eq. (12) where, for the 

elastic half-space, 

(14) AH  = Ah  = Ch/2pm1  = 
Khcha  a 
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Soil material damping D is incorporated as c = c D for 

both the h and 8 subscripts. The damping factors ch  and 

c0  are those applicable to a footing on an elastic half-space, 

as computed for example by Veletsos and Verbic (1974). 

For the fundamental mode, Eq. (12) can be simplified by 

using the approximations 
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With the aid of Eqs. (8) to (10), 
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The important parameters that affect the modal damping ratio 

YE 
are readily identified from Eq. (16). These are: 

a) the structural damping ratio Ao 
 and the foundation 

damping factors ch  and co; 

b) the modal amplitude ratios S, E, and y; and 

c) the nondimensional frequency a for the footing on the 

half-space. 



The following implications for the modal damping ratio can be 

seen from Eq. (16). 

3 

Since 62  = (p/wo
)3 , the contribution of the structural 

damping term is seen to vary as the cube of the frequency reduction 

ratio. This dependence has also been established by Veletsos and 

Nair (4) and Bielak (7). As long as the structural modal 

amplitude ratio 8 is large compared to the base amplitude C 

and rocking amplitude y, the contribution from foundation 

damping will be negligible. As 6 decreases relative to C and 

y, the contribution of structural damping towards the system 

damping ratio diminishes rapidly and the system damping ratio is 

then dominated by foundation damping. It also follows that the 

contribution of the structural damping will become negligible if 

the frequency ratio (p/wo) becomes significantly less than one. 

Modal Damping for Higher Modes  

Since p2q is significant relative to 1 for the two 

higher modes of this single-story model, the approximations in 

Eq. (16) are not acceptable and Eq. (12) has to be used. For 

the type of structure investigated here, numerical results show 

(14, 5), that the second and third modes are highly damped as a 

result of foundation radiation damping. Therefore, for an 

estimate of seismic response of this simplified model only the 

contributions of the fundamental mode need be considered. 



Parameter Study  

The characteristics of the mathematical model shown in 

Fig. 1 and described by the equations presented in Ref. 2 were 

investigated to show the influence of the main parameters 

governing the dynamic behaviour Because of the mathematical 

model chosen, the results are strictly applicable to structures 

with circular foundations on an elastic half-space. They can, 

however, be adapted to rectangular footings by deriving an 

equivalent radius (13). 

In order to reduce the number of variables to manageable 

proportions, only the dominant parameters were varied. Fixed 

parameters are: Poisson's ratio of ground, v = 0.333; 

mass ratio a = 1.03; inertia ratio 8 = 0.226. The values 

for a and 0 chosen are representative of some nuclear 

reactor structures. 

For the description of the frequency-dependent foundation 

properties, the algebraic expressions derived by Veletsos and 

Verbic (1) were used. Although the frequency-dependent stiffness 

was employed for the rocking motion, this had negligible effects 

on the results compared to using constant values. The frequency 

ratio and the modal amplitude ratios were iterated four times 

throughout the set of parameters employed. 



The variation of the frequency reduction ratio p/wo 
 is shown 

in Fig. 2, and the damping ratio AE  is plotted as a function of 

the primary parameters k/Gr, and h/r in Figs. 3 and 4. Since 

the modal damping ratio in Eq. (16) is a function of a and since 

a2  = (k/Gr )(132/L0)(  1/131), the mass density ratio b1  = m1 
 /or3  

also becomes a plotting parameter for modal damping ratio. 

Figure 3 shows that for small values of aspect ratio h/r the 

modal damping ratio increases rapidly for increasing stiffness 

ratios k/Gr For slender structures, i.e., large values of h/r, 

the modal damping ratio becomes relatively small. 

For large values of the stiffness ratio k/Gr, magnitudes 

of modal damping ratios are plotted as AE 
vs h/r in Figs. 4a 

and b, for soil material damping ratios D = 0 and 0.05, 

respectively. The results can be utilized as follows: For A 
0 

less than about 10%, the parameters for which the modal damping 

ratio will be smaller than the structural interstory damping ratio 

are those that lie below the ordinate of the applicable structural 

damping ratio. 

The following general observations are made: 

(i) For small values of interstory damping, structures with 

large aspect ratios h/r and structures of large values 

of mass ratio b
I will produce small modal damping ratios; 



(ii) For k/Gr > 2.0, the modal damping ratio is 

relatively insensitive to the stiffness ratio k/Gr, 

but depends primarily on the aspect ratio h/r and the 

mass density ratio bl; 

(iii) For large structural damping ratios A
0, the modal 

damping can be smaller than X
o for a wide range of 

commonly encountered values of aspect ratio h/r and 

mass density ratio bl; 

(iv) For k/Gr > 2.0, the increase in the system damping 

ratio XE for slender structures becomes nearly equal 

to the increase in the soil material damping ratio D. 

This is evident by comparing corresponding ordinates 

for values of h/r greater than about 1.5 in Figs. 3 

and 4 for D = 0.00 and 0.05, respectively. 

This latter observation agrees with the results from the approximate 

relation, Eq. (16). Since for soft foundations E + y is nearly 

equal to 1.0, and d is small, the system damping ratio depends 

directly on the foundation damping ratios and soil material damping 

ratios as follows: 

4  
XE = h c0 2

y + D(C+i). 

These results can have important consequences in the design 

of structures with flexible foundations. The assumption of high 

values of system damping may not be justified if a flexible 
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foundation condition is present, particularly in tall structures. 

However, material damping in the foundation soil will contribute 

to increases of the modal damping ratio. The results presented 

point to the importance of establishing realistic levels of soil 

material damping for the strain levels that are expected to occur. 

Pile Foundations 

For structures founded on piles the general relations for 

frequency reductions (Eq. (5)) and for modal damping ratio 

(Eq. (12)) are also applicable. However, the evaluation of the 

various stiffness and damping terms has to proceed differently 

than for the elastic half-space. For completeness, the 

contributions of lateral soil layer are also included here, but 

no numerical results are presented. 

A number of assumptions have to be made in order to permit 

the simplified solution of pile foundations: 

a) the pile group efficiency factor for the foundation is 

► based on static consideration and is assumed known; 
i. 

b) the efficiency factor applied to stiffness is assumed to 

be applicable also to geometric and material damping; 

c) for the results to be applicable to seismic disturbances, 

the assumption is made that horizontal motion at the pile 

ti 



top does not affect horizontal motion of the pile cap. 

This is thought to be reasonably valid for slender piles. 

The horizontal and rotational stiffnesses KH  and K, are 

evaluated by summing the contributions of mutually independent 

sources of stiffness: 

KH = Kh 
+ K + K

u 
and K 

x (I) 
= K

0 
 + K

(P 
 + K . 

Similarly the damping contributions to CH  and C are summed as 

CH =Ch+Cx+Cu 
and = Ce  +C+ C,,  

where the subscripts have the following meaning, in the horizontal 

and rotational directions, respectively: 

H, 4): total quantity 

h, 6: half-space contribution 

x, 4): pile-foundation contribution 

u, IP: side layer contribution 

The frequency is then obtained from Eq. (5) by making use of 

the total stiffness KH  and K. 
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The terms 
f112, 

and  f
182 

are geometric damping coefficients and 
, , 

 

f
111, 

and 
 f18,1 stiffness coefficient as evaluated by Novak in 

Ref. 12. Subscripts 11 and 18 pertain to horizontal and 

vertical displacement of piles, respectively; 
%L2'  Su

, S 2  and Sal 
 

are damping and stiffness terms for side layer reaction as evaluated 

and tabulated by Novak in Ref. 2. The non-dimensional frequencies 

a pertain to the respective foundation element and the adjacent soil 

at the resonance frequency of the interaction structure. Similarly 

the hysteretid material damping D is that applicable to the soil 

adjacent to the deforming foundation element. 
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The following substitutions are made: 

(Kh  + Kx  + Ku
)/KH  = r

h 
+ r

x + ru 
= 1.0 

(K6  + K. + K*) /K, = r6  + r. + r. = 1.0 

and 

KH/mi  = wA, ymih2  = co(21)  

Equations (17) and (18) then become 

(19) A11 = 

[6.12 
H 

p2 

a ax f11 2
au  Sul  

T
h 
— c + Dh + rx 

— ' + Dx + r
u 2

+ D
u 2 f11,1 2 Su 
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It may be observed that the contributions of the various sources of 

damping are scaled in proportion to their respective stiffness ratios, r. 

Whereas in principle all the terms required for calculating the 

damping ratio are known, judgment is needed in assessing pile group 

action and material damping. Furthermore, iterative procedures are 

needed when material properties are strain dependent. 



For ease of numerical evaluation, it may be advantageous to 

express A
H 

and A in terms of ao 
= a -2- , the nondimensional 

o 

frequency relative to the frequency of the fixed-based structure. 

Also, parametric approximations for the various damping terms are 

possible. These and other topics are treated in greater detail in 

Ref. 14. 

Parameter Study of Pile Foundations  

Since the horizontal and the rotational stiffness of the entire 

pile foundation can be varied somewhat independently, it is 

KH  
advantageous to retain w2/632  = — 

H o k 
and w2/w2  

o 

K 

kh2  
as 

independent variables in the parameter study. 

Figure 5 presents modal damping ratios as a function of 

w2/w2 and w2/w2  and of the nondimensional o' H o (12,  

piles referred to the fixed-based resonance 

structure. The following parameters are us 

8 = 0.226, and interstory damping ratio X 
0 

frequency a
o 
 of the 

frequency w
o 
 of the 

ed: mass ratio a = 1.0, 

= 2%. Soil material 

damping D = 0. From Ref. 12, 1.2. /f = 
f18,2"18,1 = 'f 11,2 11,1

2.38 
 

for concrete piles. 



X
E 

near = 0. This contrasts with structures founded 
o H 

432/032 

The results in Fig. 5 show that major changes in the modal 

damping ratio occur mainly at low values of w(yw, i.e., for 

relatively stiff foundations. Considerable damping arises from 

the rocking motion as is evident from the substantial values of 

on an elastic half-space, where for relatively stiff foundations 

rocking contributes very little to the modal damping ratio. 

Modal damping also increases substantially with increasing values 

of ao
. This implies that with increasing pile diameter, and 

maintaining constant rocking and horizontal pile group stiffness, 

as well as constant soil stiffness and pile slenderness ratio, 

greater modal damping values are obtained. It can also be 

ascertained from specific examples that increases in structural 

stiffness, as is reflected by larger values of w2  and ao
, 

result in increasing modal damping values. Similar results are 

obtained for A = 5%, except that near w2/w2  = 0 the modal 
o 

damping values are larger than those in Fig. 5 for ao 
= 2%. 

(See Ref. 14.) 

Equation (12), with Eqs. (19) and (20) can be rearranged so 

that all terms containing D are collected; thus the total modal 

damping ratio XE  becomes 

X
E X  = E 

- +R.D 



where R is called the "hysteretic modal damping fraction". 

Plots for R are presented in Fig. 6 for the relevant parameters 

shown there. D is assumed the same for horizontal translation and 

axial motion of the pile. Figure 6 shows that for stiff foundations, 

little of the material damping contributes to the modal damping ratio. 

As the foundation stiffness decreases relative to the structure, an 

increasing proportion of material damping becomes effective in the 

total modal damping ratio. Only for very soft foundations is 

nearly the entire amount of material damping ratio effectively 

additive to the modal damping ratio that arises from structural and 

geometric foundation damping. 
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Summary and Conclusions 

The treatment of dynamic structure-ground interaction as 

presented in this paper can be summarized as follows: 

1. The natural frequency of the fundamental mode and the corre-

sponding modal ratios can be found by a simple analytical expression. 

Iteration is required for high degrees of accuracy. 

2. The modal damping ratio AE  can be evaluated from an expression 

derived from Novak's damping relationship. This involves primarily 

the modal amplitude ratios and damping coefficients for the structure 

and the foundation soil. Relationships for foundations on an elastic 

half-space and more general formulations including pile foundations 

and lateral layer restraint on the footing are presented. 

3. This procedure facilitates the isolation and identification of 

the important parameters that govern dynamic structure-ground 

interaction and enables one to perform wide ranging parameter studies. 

4. The dynamic properties of structures on pile foundations can be 

determined similarly as for structures on elastic half-space subject 

to certain simplifying assumptions. The influence on modal damping 

ratio of elastic energy propagation into the ground and of hysteretic 

material loss in the soil has been presented for some specific 

structural parameters. 

The following conclusions have been reached: 

1. The natural frequency of the fundamental mode of a structure-

foundation system is primarily dependent on the stiffness ratio of 

structure to ground and the aspect ratio of height to width of 

foundation. 

2. The system damping ratio for the fundamental mode is a linear 

combination of the products of the damping coefficients of the ground 

and the corresponding squares of the modal amplitude ratios of the 

structure, and the interstory damping ratio of the structure times 

the interstory modal amplitude ratio to the 3/2  power. 

k 
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3. The variation of the modal amplitude ratios shows a rapid 

decrease of relative displacement and a similar increase of rocking 

displacement with increasing aspect ratios and stiffness ratios. This 

points to the predominant influence that rocking has on structure-

ground interaction effects of moderately slender or very slender 

structures founded on an elastic half-space. 

4. The contribution of structural interstory damping to the modal 

damping ratio decreases rapidly with increasing frequency reduction 

ratios. Alternatively it may be stated that with decreasing ratios of 

structure stiffness to foundation stiffness the contribution of the 

interstory damping becomes insignificant and the system damping will 

be dominated by foundation damping. 

5. For stiffness ratios k/Gr greater than about 2, changes in soil 

material damping ratios are reflected in almost identical increases in 

system damping ratios. 

6. For a wide range of parameters, system damping ratios for 

structures on flexible soils can be smaller than the fixed based 

structural damping values, particularly for large aspect ratios and 

large mass density ratios. Consideration of soil material damping 

increases the system damping ratio and thereby reduces the range over 

which such reduced damping ratios can occur. 

7. For pile foundations substantial levels of modal damping can be 

achieved with large diameter piles even when soil material damping is 

neglected. The contributions of soil material damping to the modal 

damping ratio is most efficient for soft foundations; for stiff 

foundations only a small fraction of material damping contributes 

effectively to the modal damping ratio. 
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